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Abstract—The emerging energy harvesting technology facili-
tates the development of ubiquitous and everlasting battery-free
motion detectors. This article introduces a robust design of
the transient-motion-powered motion detector, which is called
ViPSN-pluck. “ViPSN” is the acronym for the vibration-powered
sensing node while “pluck” stands for the plucking-motion energy
harvester. By using a piezo-magneto-elastic structure, ViPSN-
pluck can efficiently harvest energy from a transient motion. By
properly making good use of this tiny harvested energy, ViPSN-
pluck can effectively carry out motion detection and Bluetooth
low-energy (BLE) wireless communication. Given the concur-
rency of mechanical potential energy precharging and motion
detection, the transient-motion plucking energy harvester used
in ViPSN-pluck has the merit of high energy reliability. This
unique feature is unprecedented in the solar and radio-frequency
(RF) energy harvesting cases, which might suffer from energy
outages under fluctuating irradiance or RF signal strength,
respectively. The working principle of ViPSN-pluck, in particu-
lar, the dynamic characteristics of the plucking energy harvester
and the energy matching between generation and utilization,
are discussed in detail to demonstrate the robustness in opera-
tion. The cyber-electromechanical synergy among the mechanical
dynamics, power conditioning circuit, and low-power embedded
system is highlighted. The design methodology of ViPSN-pluck
provides a valuable reference for the developments of future
motion-powered Internet of Things devices.

Index Terms—Battery-free Internet of Things (IoT), energy
harvesting, motion detector, plucking, ubiquitous sensing.

I. INTRODUCTION

MOTION detection plays an essential role in secu-
rity surveillance [1], intruder detection [2], occu-

pancy identification [3], activity monitoring [4], smart
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building [5], [6], etc. Motion detectors should be economi-
cal and robust, such that they can be massively deployed
and offer pervasive service to support various smart applica-
tions [7]. Existing motion detecting technologies are mostly
based on visual [8], [9], infrared [10], mechanical [11], or
audio [12] sensors. Some are expensive and require complex
installation. Moreover, most of these motion detecting devices
are still powered by grid power or chemical batteries. As the
number of nodes increases, electrical wiring or battery mainte-
nance costs considerable money and human effort. Therefore,
battery-free and maintenance-free solutions are necessary for
the ubiquitous and everlasting deployment of massive motion
detectors.

Energy harvesting, as an emerging technology in the last two
decades, aims to scavenge wasted energy from the ambiance. It
provides promising solutions to address the sustainable power
supply issue and facilitates the realization of battery-free
and maintenance-free Internet of Things (IoT) devices. The
battery-free motion-sensing devices powered by ambient solar
photovoltaic (PV), radio-frequency (RF), or kinetic energy,
have attracted numerous research interests in recent years.
For instance, a series of RF-powered passive tags has been
built for motion monitoring [13], [14]. Solar-powered smart
on/off body sensing devices have been developed to record
and infer human activities and interactions [15], [16]. The
design of battery-free cameras has been extensively explored
by considering the issues from various perspectives, including
the harvesting sources [17], wireless communication [18], and
system architectures [19], [20].

Like most of the renewable energy sources, the ambient
energy sources are volatile, i.e., it often fluctuates with time.
Therefore, energy-harvesting-powered IoT devices are remark-
ably different from their conventional battery-powered coun-
terparts because the variable ambient power supply violates the
basic assumption of battery-powered devices—a stable energy
supply [21], [22]. The sensing, computing, and communicat-
ing tasks in battery-free systems need to be redesigned to
better meet with the unstable power supply [23]. It is chal-
lenging that, even with some cutting-edge techniques, such as
progress checkpointing [24], special debugging tools [25], and
finely tuned or reconfigurable power supply strategies [26],
energy-harvesting-powered devices are still less reliable than
their battery-powered counterparts [27].

In PV, RF, and most kinetic energy harvester (KEH) cases,
the harvested power is accumulated or buffered in the electrical
domain after energy transduction. On the other hand, given its
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Fig. 1. Comparison of energy harvesting technologies. (a) Solar energy har-
vesting based on photovoltaic (PV) effect. (b) Radio-frequency (RF) energy
harvesting through electromagnetic transmission. (c) Motion energy harvest-
ing via a plucking mechanism. Energy reliability is guaranteed by properly
designing the potential energy precharging process.

low-frequency operation and affluent dynamics, a KEH can be
better designed to match the source feature by making some
specific mechanical modulations [28]. For example, to harness
energy associated with slow motion, frequency up-conversion
designs, such as the plucking mechanism, are usually utilized.
A plucking KEH buffers energy in the mechanical domain and
later carries out electromechanical transduction, as illustrated
in Fig. 1(c). The mechanical-to-mechanical energy conversion
has a perfect coupling coefficient and rapid conversion speed
if inertia is sufficiently small. Therefore, the motion energy
can be more determinately extracted, in the form of potential
energy, for reliably powering some IoT tasks within the lower
bound of harvested energy. Such a feature of the buffer-then-
convert KEH designs is unique, compared with the PV and
RF cases, as well as their convert-then-buffer KEH counter-
parts [29]. Since the “energy packet” of every single plucking
motion is deterministic, the reliability of IoT operations is
reinforced.

The plucking mechanism was extensively studied to
broaden the energy harvesting bandwidth, in particular, to
improve the electromechanical conversion under low vibra-
tion frequency [30], [31]. However, nearly all literature
about plucking KEH focused on only mechanical dynam-
ics and continuous plucking motions, where harvested power
rather than energy was emphasized; the electrical dynam-
ics is simply taken as a linear resistor; no IoT element
was included [32], [33]. On the other hand, in other stud-
ies focusing on the motion-powered IoT design, only the
simplest linear mechanical harvester was used [34], [35].
The mechanical dynamic effect was even neglected for sim-
plicity in some studies [36]. In a word, few studies have
investigated or even discussed the synergy among all essen-
tial mechanical, electrical, and cyber parts toward a practical
transient-motion-powered IoT application yet.

Given the aforementioned challenge and insufficiency in
system-level studies, this article introduces a systematic design
of a transient-motion-powered sensing node, which is called
ViPSN-pluck in short. ViPSN-pluck has integrated energy
harvesting, motion detection, and wireless communication

functions. In particular, the plucking design enables concurrent
motion energy harvesting and motion information acquisition.
The harvested energy is sufficient to power some specific
sensing, computing, and wireless communication functions.
Instead of relying on continuous motions, such as walking
and running, ViPSN-pluck explores an extreme excitation sce-
nario by making use of a single plucking motion, which is
discrete and instantaneous. The plucking KEH can be regarded
as a mechanical modulator, where mechanical potential energy
is precharged before mechanical-to-electrical energy trans-
duction takes place. The potential energy precharging action
guarantees the lower bound of harvested energy from a tran-
sient motion, such that the IoT tasks, including motion pattern
identification and wireless communication, can be reliably
executed.

There are three major highlights for this ViPSN-pluck
design, which are listed as follows.

1) ViPSN-pluck presents a pioneering design toward robust
transient-motion-powered IoT applications.

2) By emphasizing the potential energy precharging pro-
cess, ViPSN-pluck raises the attention toward energy-
oriented KEH-IoT designs.

3) By properly correlating the motion energy generation
and motion direction detection and making a cyber-
electromechanical co-design, ViPSN-pluck introduces
a novel battery-free sensing architecture for motion
detection.

II. RELATED WORK

A. Motion Detection

The existing human motion detection is realized through
either device-based or device-free solutions. Their features and
principles are briefly reviewed and summarized as follows.

Device-Based: Conventional human motion detection
requires the users to wear inertia measurement units (IMUs),
including accelerometers and gyroscopes [37], [38]. The IMU
can provide accurate measurements of motion data. However,
the installation and frequent battery recharging are inconve-
nient and troublesome [39]. Recently, much effort has been
devoted to developing battery-free wearable motion detectors.
CapBand [15] was designed to recognize human hand ges-
tures by sensing small skin movement of the human wrist via
a successive capacitance measurement technique. The system
is powered by a solar energy harvesting module. On the other
hand, there are some designs powered by the RF energy har-
vesting technique. For example, a stretchable and flexible
skin-interfaced sensing system introduced in [40] was used
to record continuous and clinical vital physiological param-
eters. Its sweat sensor generates electrical signals that are
proportional to the concentration of target analytes. It operates
like a biofuel cell [41]. In addition, thermoelectric conversion
has also been applied to produce electricity from body tem-
perature gradient for powering wearable devices, such as a
wristwatch [42], a forehead headphone [43], and other medical
sensors [44], [45].

Device-Free: To get rid of the wearable burden, noncontact
sensors, including cameras [46], passive infrared sensors,[10],
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Fig. 2. ViPSN-pluck architecture. (a) Top view of the plucking KEH in three positions. (b) Field installation. (c) ViPSN modules. (d) Data aggregator.

audio-based sonar systems [12], or RF identification plat-
forms [7], [47] were used for building device-free motion
detection system. However, these systems have some draw-
backs, such as limited information and restricted sensing area,
due to ambient noise, weak echo signals, multipath effects, etc.
Moreover, the maintenance of a large number of ubiquitous
sensors for supporting an everlasting operation is extremely
troublesome.

The maintenance problem might be solved by introducing
energy harvesting-based battery-free solutions. For example,
WISPCam [18], [19], which is remotely powered by an RFID
reader, could realize reliable image capture for motion record-
ing and surveillance. The passive RFID tag itself can also
be used for motion detection and human tracking. An intru-
sion detection system, named Twins, was developed based on
this principle by leveraging the interference among two pas-
sive tags for movement detection [1]. OptoSense [16] is a
self-powered sensing system that can infer user activities and
interactions according to ambient light intensity. In OptoSense,
the ambient light not only generates sensing signals but also
supplies energy to support the IoT operations.

B. Kinetic Energy Harvesting

Energy harvesting from human or machine motions is one of
the most promising sustainable energy solutions for massively
deployed IoT devices [48]. The daily energy consumption of
a normal human being is about 1.07 × 107 J, which indi-
cates that the average power is 124 W [49]. Most of the
energy is wasted in body motions [50]. Different efforts have
been made to extract energy from human motions, such as
joint rotation, foot strike, or limb swing and convert the
extracted energy into useful electricity [51]. However, human
motions are generally in the low-frequency range, i.e., about
0.2–10 Hz. On the other hand, electromechanical transducers
generate more power around their resonant frequencies, whose
range is around 60–180 Hz. Therefore, to match the preferred
frequency ranges of the source and energy harvester, mechani-
cal modulation designs are often needed [28]. The extensively
studied mechanical modulation methods for harnessing energy

associated with the low-frequency movement are referred to
as the frequency up-conversion mechanisms.

Frequency Up-Conversion: Given the large potential
demand for self-powered wearable electronics, various
frequency upconversion designs have attracted much research
interest in recent years [52]. According to the literature, the
existing frequency upconversion methods can be summarized
and classified into three major categories: 1) impact-based;
2) snap-through; and 3) plucking designs. Among these solu-
tions, the plucking approach has been used to design many
energy harvesters that harness different human motions, such
as limb movement [53], [54] and knee-joint rotation [55]–[57].
As illustrated in Fig. 1(c), a plucking motion refers to an
action that pushes/pulls a harvester structure away from its
elastic equilibrium and then quickly releases it after a cer-
tain critical point. The critical releasing point defines the
precharged energy in the form of mechanical potential energy.
After release, the structure starts an underdamped vibration
at its resonant frequency, which is usually higher than that
of the driving motion. In this way, the KEH always tran-
siently operates around its resonance, where the transduction
power is maximized. The previous studies of plucking KEH
focused on the power generation after the frequency upcon-
version from a low-frequency vibration to high-frequency
transient underdamped vibrations without considering any end
applications [32], [58]–[60].

When being fully linked with the information demand, it
turns out that only a single plucking motion can reliably ful-
fill fundamental IoT detection and connection. Since we only
consider the application of a single plucking motion, the har-
vested energy, rather than power, is regarded as the key factor
for evaluating the feasibility of the plucking KEH in this study.

III. SYSTEM OVERVIEW

The system architecture of ViPSN-pluck, including its
mechanical structure for energy harvesting and motion sens-
ing, circuit modules, and data transmission scheme, is illus-
trated in Fig. 2.
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The main structure is a piezoelectric cantilevered beam,
which is fixed at the door frame, and a pair of repelling mag-
nets, which are installed at the beam’s free end (M1) and
the moving door (M2), respectively, as shown in Fig. 2(a)
and (b). The three representative positions during the open-
door and close-door motions are denoted as positions #1–#3,
respectively. In the close-door motion, the door magnet moves
through position #1 to position #2 successively and stops at
position #3; while in the open-door motion, the door mag-
net starts from position #3 and moves through position #2
and #1, successively. In either the open-door or close-door
motions, the door magnet induces a magnetic plucking action
to the piezoelectric cantilever, such that to trigger its transient
underdamped vibrations. Energy is harvested in the meanwhile
of underdamped vibration.

In order to tell the open-door and close-door motions, the
two plucking motions are intentionally designed to be asym-
metric by introducing a horizontal misalignment between the
center of door magnet M2 and the equilibrium position of
beam magnet M1 when the door is closed. Therefore, the
amounts of accumulated energy after the two motions are
different. Since the harvested energy is approximately pro-
portional to the transmitted packets, the direction information
can be obtained by the receiver by simply counting the packet
number. The working principle and dynamics of the plucking
KEH are discussed in detail in Section IV.

After the plucking KEH, the harvested energy is conditioned
in the electrical domain. The development platform ViPSN
has provided a well-rounded solution for energy enhancement,
energy management, and fundamental IoT applications [61].
The three ViPSN modules used in this design are shown in
Fig. 2(c). A self-powered synchronized switch harvesting on
inductor (SP-SSHI) power-boosting interface circuit is used
in ViPSN-pluck for enhancing the energy harvesting capabil-
ity [62]. The energy management circuit carries out voltage
regulation with the awareness of the energy storage level. The
wireless module sends out Bluetooth low-energy (BLE) signals
whenever a sufficient amount of energy is collected.

The data aggregator, whose scheme is illustrated in
Fig. 2(d), listens for packets from one or multiple ViPSN-
pluck motion detectors. Upon packet reception, it counts the
number of received packets to identify the motion direction
accordingly. Moreover, the data aggregator could also archive
the data for historical analysis or send them to the cloud for
further analysis, processing, and visualization. In this design,
the standard BLE beacon protocol is utilized to broadcast
the motion detection information. Thus, any Bluetooth device,
such as a smartphone and laptop computer, can work as a data
aggregator.

IV. PLUCKING KEH PRINCIPLE

The transient plucking KEH plays an essential role in guar-
anteeing the performance of ViPSN-pluck. From the energy
supply point of view, the transient-motion harvester should
harvest sufficient energy during a single plucking motion for
supporting the operation of ViPSN-pluck. To enhance the
robustness of sensing, computing, and communication and

Fig. 3. Energy flow dynamics of an energy harvester under a plucking
excitation.

the success rate of direction identification, the mechanical
structure must be carefully designed.

A. Transient-Motion Harvester

One of the transient-motion-powered motion detectors is
installed at the front door of our laboratory. A piezoelectric
cantilevered beam with a tip magnet M1 is installed at the sta-
tionary door frame, while the driving magnet M2 is installed
at the moving door. During the transient open-door or close-
door movements, the driving magnet M2 skims the vicinity
of the tip magnet M1. The magnetic force pushes M1 away
from its equilibrium. After the tip magnet M1 is brought to
a critical position, where the magnetic force could not bal-
ance the restoring force of the bending beam, the piezoelectric
cantilevered beam is rapidly released. After being released,
the cantilevered beam starts to oscillate until the vibration is
damped out. In general, a plucking action can be divided into
two phases before and after the critical point, i.e., mechanical
potential energy precharging and decaying underdamped-free
vibration. Instead of expecting a continuous power supply
from the harvester, we are interested in how much energy
can be harvested from a transient motion, because the har-
vested energy in a transient determines the run-time behavior
of ViPSN-pluck, such as when to execute tasks, when to switch
to low-power mode, and when to start communication.

B. Potential Energy Precharging

Fig. 3 shows the energy flow dynamics under a single pluck-
ing excitation. There are four forms of energy involved in
this process: 1) mechanical potential energy; 2) mechanical
kinetic energy; 3) thermal energy; and 4) electrical potential
energy. The energy transformations during this process can be
summarized as follows.

1) Plucking Start: At the beginning, the energy harvester is
at its equilibrium position. We set this position the zero-energy
position.

2) Energy Accumulation: As the driving magnet forces the
cantilevered beam to deform, it does positive work to the can-
tilevered beam. Assuming a very slow plucking motion, in
which the kinetic energy can be neglected, the input energy
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is collected by the deformed cantilevered beam in the form
of strain energy, i.e., the mechanical potential energy of a
deformed structure. The potential energy reaches its maximum
when the cantilevered beam arrives at the critical position. The
total mechanical potential energy at M1 position w and M2
position b can expressed as follows:

U(w, b) = 1

2
Kw2 +

∫
Fm cos θ d(b − w) (1)

where K is the equivalent stiffness of the beam; w is its tip
deflection; b is the position of the driving magnet M2, Fm is the
magnetic force, θ is the angle between the repelling magnetic
force Fm and movement direction w. The beam deforms until
it arrives at the critical position bc (the very instant is denoted
as tc), where the magnetic force is no longer sufficiently large
to counteract the elastic force. At this critical position, the
potential energy stored in the cantilevered beam reaches a
maximum, as shown by the tc instant in Fig. 3. The work
done by the moving magnet is converted into the potential
energy, which is stored in the deformed beam. Therefore, this
process is called potential energy precharging. The precharged
potential energy is a function of the two displacements of M1
and M2 at the critical instant, i.e.,

Epre = U[wc = w(tc), bc = b(tc)]. (2)

3) Underdamped Vibration: After passing through the crit-
ical point, the cantilevered beam is released from the magnetic
lock. It tends to return to its equilibrium position. Since the
beam is an underdamped vibrator, it starts a decaying vibration
around its equilibrium position under its resonant frequency,
as shown in Fig. 3. During the free vibration, the precharged
potential energy (Epre) (illustrated in red) is first converted
into the mechanical kinetic energy (in orange), then back into
potential energy, and back and forth repeatedly. In the mean-
time, due to the presence of mechanical damping, a part of
the energy is dissipated, i.e., converted into thermal energy (in
cyan). On the other hand, because of the piezoelectric trans-
ducer, a part of the energy is converted into electrical energy
and stored in the electrical storage devices, a small capacitor
in this study. Since the driving magnet only does work in the
precharging phase, the precharged potential energy Epre deter-
mines the level of total energy income in a single plucking
motion.

In practice, given that the door speed is larger than the qua-
sistatic case, the input energy is actually larger than that in
the aforementioned slow motion case. In particular, with the
increase of the door speed, the initial kinetic energy increases.
Hence, the lower bound of precharged energy is guaranteed.
Later experiment shows that, at normal door speeds, the initial
kinetic energy is usually much smaller than the initial potential
energy. The lower bound of precharged energy can be adjusted
by tuning the mechanical structure features, such as the beam
geometries (related to elastic potential) and the horizontal gap
between magnets M1 and M2 (related to magnetic potential).

A parameter η is introduced to denote the electromechanical
energy conversion efficiency, which is related to the mechan-
ical structure, interface circuit, and energy management unit.
The harvested electrical energy, therefore, can be simply taken

as part of the precharged energy Ee = ηEpre. Only when
the harvested energy Ee exceeds the kicking-off threshold of
ViPSN-pluck, which is denoted as Eload, the sensing and wire-
less communication functions can be fulfilled successfully.
Given that the energy consumption of some specific software
operations, such as initialization, sensing, and transmitting,
is normally fixed, the energy reliability of ViPSN-pluck can
be reinforced by carefully measuring the energy demand of
the specific IoT functions, designing the mechanical structure,
and further making sure ηEpre > Eload. Such a prechargeable
feature before energy transduction is unique in mechanical
or motion energy harvesters, compared to their PV and RF
counterparts.

C. Potential Energy Pictures

The working principle of the plucking energy harvester and
its motion detection function can be better elaborated by look-
ing into its potential energy pictures. Figs. 4 and 5 show
the varying potential wells in either open-door or close-door
motions, respectively. The potential energy profile progres-
sively changes along with the driving magnet movement. Each
plucking motion drives the single-well monostable system to
a bistable system, then to another monostable system. Yet, the
starting and stopping potential wells are different.

The pictures of the open-door case are shown in Fig. 4. In
the beginning, as shown in Fig. 4(a), the cantilevered beam
stays still. Due to the presence of the driving magnet M2,
whose resting position has a small offset to the right of the
beam equilibrium, the cantilevered beam is slightly bent to
the left-hand side. From the potential energy profile shown in
Fig. 4(f), the magneto-elastic system is a monostable system
since there is only one potential well-1. When the driving mag-
net moves to the left, the cantilever is further bent. A second
shallower potential well-2 emerges, as shown in Fig. 4(g). The
magneto-elastic system transits from a monostable system to
a bistable one. In the following phases, the potential profile
evolves from asymmetric [see Fig. 4(g)] to symmetric [see
Fig. 4(h)], then to another asymmetric [see Fig. 4(i)] states.
Finally, when the driving magnet moves far away from the can-
tilever harvester, the effect of the driving magnet is negligible.
Therefore, the potential profile becomes a linearly symmetric
case. The cantilevered beam undergoes a linear underdamped
vibration, as shown in Fig. 4(j).

For the close-door case, the evolving pictures are illus-
trated in Fig. 5. Compared to the open-door case shown in
Fig. 4, the process of the close-door motion is reversed. It
starts from a linear state and ends at a nonlinear monostable
state. The potential pictures from Fig. 4(g)–(i) and Fig. 5(g)–(i)
are symmetric. The only difference to distinguish the pluck-
ing directions is from the depths of their corresponding final
potential wells. The deeper the final potential well, the more
energy is generated. As the moving magnet stops at negative
infinity in the open-door case and the rest position bt in the
close-door case, respectively, an asymmetrical design is real-
ized. Since the final well of the transient-motion harvester in
the close-door process is shallower, the harvested energy in
the close-door process is less. According to this feature, the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Plucking dynamics in the open-door movement. (a)–(e) Beam positions. (f)–(j) Potential energy pictures. (a) and (f) Starting position #1 with a
monostable potential well. (b) and (g) Intermediate position with two asymmetric wells. (c) and (h) Intermediate position #2 with two symmetric wells.
(d) and (i) Critical position at which the energy barrier disappears. (e) and (j) Final position #3 ending up with the beam vibration in a single linear well.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Plucking dynamics in the close-door movement. (a)-(e) Beam positions. (f)-(j) Potential energy pictures. (a) and (f) Starting position #3 with a single
linear potential well. (b) and (g) Intermediate position with two asymmetric wells. (c) and (h) Intermediate position #2 with two symmetric wells. (d) and (i)
Critical position at which the energy barrier disappears. (e) and (j) Final position #1 ending up with the beam vibration in a monostable nonlinear well.

motion direction can be differentiated based on how much
energy is captured during a single plucking excitation.

The potential energy picture of any bistable or monostable
system can be described with a third-order polynomial as
follows [63], [64]:

U(w) = 1

2
(K − α)w2 + 1

3
βw3 + 1

4
γ w4 (3)

where α, β, and γ are the polynomial coefficients to approx-
imate the magnetic potential. They represent the additional
linear, quadratic nonlinear, and cubic nonlinear stiffnesses,
respectively, which are brought in by the magnet pair. Once
the magnetic strengths of the magnets are provided, these three

parameters are related to the distance b, the position of the
driving magnet M2.

As shown in Fig. 4(c) and (h) and Fig. 5(c) and (h),
when the driving magnet M2 arrives at position #2, we have
β = 0. At this position, we obtain a symmetric double-well
bistable potential profile. As the driving magnet slightly moves
away from position #2 to either direction, β becomes posi-
tive (close-door) or negative (open-door). The two potential
wells become asymmetric. The potential barrier is separat-
ing the two wells decreases as β getting more positive or
negative. For example, in the open-door motion, as the left
well-1 gets elevated and the right well-2 gets deepened grad-
ually, the left well-1 will eventually disappear, as shown in
Fig. 4(i). After passing through the critical position, only the
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TABLE I
VIPSN-PLUCK SPECIFICATIONS

TABLE II
ENERGY STATISTICS

right well-2 lefts. The cantilevered beam is trapped in well-2
and vibrates, as shown in Fig. 4(j). The mathematical model
helps describe the evolution of potential wells in either motion
direction.

V. IMPLEMENTATION AND EVALUATION

A. Hardware Platform

The prototype of ViPSN-pluck is shown in Figs. 2 and 8.
A piezoelectric cantilever is used as the kinetic transducer.
The holding fixture of the transient-motion energy harvester
is manufactured using a 3-D printer. The other three circuit
units are developed based on ViPSN [61], an opensource
development platform for vibration-powered IoT devices.1 The
specifications of ViPSN-pluck are listed in Table I. In the
energy management circuit, an LTC3588-1 IC [66] developed
by Linear Technology Inc. is adopted for voltage regula-
tion. It integrates a low-loss full-wave bridge rectifier and
a high-efficiency buck converter. MIC841 [67], a microp-
ower precision-voltage comparator with adjustable hysteresis,
is used to detect the energy level of the storage capacitor. A
10-μF storage capacitor, which satisfies the minimum energy
demand for at least two rounds of IoT operations, is selected.
A programmable nRF52832 BLE system on chip (SoC) by
Nordic Inc. [68] is utilized for sensing and wireless commu-
nication. A smartphone is used as a data aggregator. It receives
the packets from ViPSN-pluck, processes the data, and handles
the Internet connection.

B. Basic Operation

Fig. 6 shows the energy, supply, and load current in a com-
plete operation cycle of ViPSN-pluck when it is activated.
After a single plucking excitation, as some potential energy
is converted into electricity via the beam energy harvester,

1https://github.com/METAL-ShanghaiTech/ViPSN

Fig. 6. Workflow of ViPSN-pluck during one plucking motion. (a) Storage
energy Estore. (b) DC voltage output Vcc. (c) Load current.

Fig. 7. Measured harvested energy under different door speeds. (a) Open-door
motion. (b) Close-door motion.

the storage energy Estore increases. When it reaches a spe-
cific threshold, the buck converter in LTC3588-1 is activated
to provide a regulated 3.3-V voltage supply to boot up the
microcontroller, as shown by the steep rising edge in Fig. 6(b).
Subsequently, after a brief energy rebuild-up phase (in yellow),
robust radio wake-up is robustly achieved without meeting
unexpected energy outages. As a result, BLE beacon packets
can be sent out later at a constant time interval. As shown in
Fig. 6(c), more than 15 BLE beacon packets are sent out after
one plucking motion. The number of the BLE beacon pack-
ets also implies information about the harvested energy level
from this specific plucking action. Finally, at the end of this
operation cycle, the microcontroller exits the active mode, and
the LTC3588-1 disconnects the voltage supplier. The system
enters the deep-sleep mode and waits for the next plucking
excitation.

C. Energy Reliability

Fig. 7 shows the energy harvesting performance of the
ViPSN-pluck prototype under open-door and close-door exci-
tations. Experiments are carried out under different door
accelerations, whose peak values range from 0.03 to 0.6 g.
Experimental results demonstrate that during either the open-
door or close-door process, ViPSN-pluck can robustly harvest
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Fig. 8. ViPSN-pluck prototypes in field tests. (a) Deployment configuration. (b) Door motion detector. (c) File cabinet door detector. (d) Window detector.

Fig. 9. Charging history. (a) Open-door motion. (b) Close-door motion.

at least 400-μJ electrical energy. Given the nominal energy
consumption of a BLE IoT operation, including the three func-
tions listed in Table II, is about 201.54 μJ, the harvested
energy from a single open-door or close-door motion can
satisfy the energy demand of ViPSN-pluck.

D. Motion Direction Identification

From the experimental results shown in Fig. 9(a) and (b),
we can see that, for this ViPSN-pluck prototype, the harvested
energy can be accumulated to about 1600 and 850 μJ in
open-door and close-door motions, respectively, in around 1 s.
Fig. 10(a) shows the measured harvested energy under differ-
ent rest positions of the driving magnet M2, i.e., bt parameter.
Fig. 10(b) shows the average energy differences under differ-
ent bt. As mentioned in Section IV-C, the dynamic behavior
of the asymmetric well can be set by tuning bt. When bt is
larger, the magnetic force produced by M2 and applied to the
tip magnet M1 becomes weaker. Therefore, the depth of the
final asymmetric well-1 is closer to that of the linear well-
2. The harvested energy in the two plucking directions are
closer under large bt. On the other hand, for the plucking
motion in either direction, if bt is too small, i.e., the M2 rest
position is closer to the M1 equilibrium, the initial well is
too shallow to provide large input energy. It can be observed
from the measurement results shown in Fig. 10(a) that less
energy is harvested under smaller bt. Therefore, the energy
difference between open-door and close-door processes can
be optimized by tuning the rest position of the driving mag-
net M2. The different harvested energy under different bt is
shown Fig. 10(b). We set bt to 30 mm in all experiments

Fig. 10. Harvested energy under different bt , the rest position of M2.
(a) Harvested energy with different motions. (b) Difference in average energy.

Fig. 11. Performance of ViPSN-pluck in several real-world scenarios.
(a) Harvested energy from several object movements. (b) Delivered packets.

since it gives the most significant energy difference for better
plucking direction identification.

The software code of ViPSN-pluck is optimized to ensure a
rapid and robust response. Each plucking activation consists of
one initialization and several radio transmissions. The energy
consumption for each operation is rather stable as listed in
Table II. Since the energy consumption of a beacon broad-
casting is almost the same, about 60.37 μJ, the harvested
energy is roughly proportional to the possible sent-out pack-
ets. By counting the number of BLE beacon packets received
by the data aggregator, as illustrated in Fig. 2(d), the plucking
direction can be identified.
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E. Field Test

After the experimental test to investigate the performance
of ViPSN-pluck under various parameters, a field test is car-
ried out to test the actual feasibility of ViPSN-pluck in real
scenarios. Fig. 8 shows the field setup and the ViPSN-pluck
prototypes installed in three field applications to detect and
identify the open-door/close-door actions. The prototypes are
installed at the front door, a file cabinet, and a window
in our laboratory, as shown in Fig. 8(b)–(d), respectively.
Table I and Fig. 8(a) show the specifications and deployment
configuration.

Fig. 11(a) shows the harvested energy in the open-
door/close-door motions in different scenarios. Fig. 11 shows
the number of the delivered BLE beacon packets, which is
recorded and counted by the data aggregator. In this field
test, we use a smartphone as the system terminal. In different
scenarios, there are some differences due to the influence of
environmental conditions. For example, the material of moni-
tored objects would affect the magnetic field of the magnets.
As shown in Fig. 11(a), under the same configuration, the
energy harvested by ViPSN-pluck deployed in the file cabinet
(made of steel) is less than that in the window case (made
of aluminum alloy) and that in the front doorcase (made of
wood). In addition, there are also some differences due to the
plucking kinetic energy fluctuates. But, in general, the experi-
mental results show that the harvested energy is always more
than the energy demand for a round of sensing and wireless
transmission. At least 500 μJ of electric energy can be har-
vested to run the IoT functions. At least four beacon packets
can be received to identify the motion directions.

Besides those scenarios shown in Fig. 8, ViPSN-pluck,
as a self-powered motion detector, can also be deployed in
many other applications, such as archives management, furni-
ture safety, warehouse, and logistics. These realizations allow
ViPSN-pluck to interconnect many moving things in the real
world, either directly or indirectly.

VI. CONCLUSION

This article has presented a transient-motion-powered IoT
motion detector, which is called ViPSN-pluck. It is developed
based on a cyber-electromechanical synergetic co-design.
The development of ViPSN-pluck involves knowledge from
multiple disciplines, including mechanical dynamics, electri-
cal power management, and low-power embedded systems.
Through the sophisticated collaboration between the mechani-
cal harvester configuration and software codes, the associated
motion information can be sent out with an off-the-shelf BLE
wireless module.

To address the sustainable power supply issue, a transient-
motion harvester has been designed for ViPSN-pluck.
Different from the solar or RF energy harvesting solu-
tions, which might be constrained by fluctuating sources, the
transient-motion harvester has a unique feature to provide a
highly reliable energy supply to self-powered applications.
Such a feature benefits from its potential energy precharging
mechanism. To realize simultaneous motion detection, a novel
motion detection mechanism has been conceived according

to the dynamic characteristics of the transient-motion har-
vester. By making an asymmetric design, the amounts of
harvested energy by the transient-motion harvester from dif-
ferent plucking directions are different. Owing to this feature,
motion direction can be identified by counting the sent-out
beacon packets, which are roughly proportional to the har-
vested energy. Therefore, in ViPSN-pluck, the energy harvester
itself also acts another important part as the motion detector.

An experimental test has shown that the energy harvested
from a single plucking excitation can be up to 2000 μJ,
which is far more sufficient to power the basic operation of
ViPSN-pluck. A field test in three real-world scenarios has
validated the robustness of ViPSN-pluck for motion detec-
tion. In general, the work presented in this study provides
valuable guidance for the design and development of future
motion-powered IoT systems.
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